
AI Overview

MGMT 675: AI-Assisted Financial Analysis

API Calls

Creating an App that Makes API Calls

• Get an API key from OpenAI or other LLM provider

• Generate code that sends a prompt to an AI and gets a response.

API key should be included in code to authorize (for billing).

• Or create an interface that allows the user to formulate a prompt.

Your code may expand the prompt to include whatever information

you want to provide to the LLM.

• Or send your own prompt and allow users to send prompts.

MGMT 675 2

Examples

• Julius prompt: build a Streamlit app that scrapes the headlines from

The Guardian website, sends them to ChatGPT 4o using my API

key, and returns a summary of the headlines and an assessment of

the sentiment of the headlines.

• After deployment: Streamlit app with API call built by Julius

• Replit prompt: same as Julius prompt + provide a chat interface

that allows the user to ask further questions about the headlines.

• Deployed directly from Replit: Replit app with API call

• Build apps with Zapier

MGMT 675 3

https://mgmt675-app-kbhft94zmjfhfjqbdq9csf.streamlit.app/
https://guardian-pulse-kerryback.replit.app/
https://zapier.com/blog/categories/zapier-automation/

Python code for API call

import openai

[input openai_api_key]

client = openai.OpenAI(api_key=openai_api_key)

prompt = "Here are today ’s headlines"

[then include the scraped headlines]

prompt += "Based on these headlines , ..."

response = client.chat.completions.create(

model="gpt -4o",

messages =[

{"role": "system", "content": "You are a

helpful assistant that analyzes news

headlines."},

{"role": "user", "content": prompt}

]

)

MGMT 675 4

API-based Apps vs AI Agents

From ChatGPT:

Feature API-based App AI Agent

Autonomy ✗ Only reacts ✓ Acts independently

Goal-Oriented ✗ Task-based ✓ Goal-driven

Adaptability ✗ Predefined logic ✓ Can adapt behavior

Tool Use ✓ Manual calls ✓ Chooses tools as needed

Memory ✗ Usually none ✓ May have memory

Intelligence Level ✗ Fixed logic ✓ Planning & reasoning

MGMT 675 5

Some Chatbots

Chatbots

• ChatGPT, Gemini, Claude, Perplexity (try ChatGPT Deep Research)

• Custom GPTs

• Google NotebookLM

• Notebook = collection of sources (text, images, etc.)

• Can ask questions about the sources

• Can create audio (”podcast”) from the sources

• Example: Stanford AI Report 2025

• NotebookLM podcast version also at this link

• OpenRouter provides access to many LLMs. Use your own API keys

for paid LLMs or use free LLMs.

MGMT 675 6

https://openai.com/index/introducing-gpts/
https://notebooklm.google/
https://hai.stanford.edu/ai-index/2025-ai-index-report
https://notebooklm.google.com/notebook/83e22c17-71bf-4bb2-a803-294ffe11d365/audio
https://www.dropbox.com/scl/fi/ui3b7et1mi575b947n11s/Stanford_AI_Report_2025.wav?rlkey=dpfb7i75uk1yhecn668bzwp2w&dl=1
https://openrouter.ai/

Language Models

Tokenization, Embedding, and Prediction

1. Tokenization: break text into tokens (words, characters, or

subwords). Example: unhappiness → [un, happy, ness]

2. Embedding: assign each token to a vector (list of numbers)

Tokenization + Embedding → text translated into sequence of

vectors

3. Prediction problem: given a sequence of vectors, predict the next

vector

Embedding + Prediction optimized jointly by machine learning

MGMT 675 7

Example: GPT-3

• Tokenization: use 50,257 tokens

• Embedding: each token assigned to a vector of 12,288 numbers.

• 50,257 tokens × 12,288 numbers per token = 617 million numbers

(parameters)

• Prediction: Use sequence of 2,048 prior tokens to predict next token.

• 2,048 tokens is 2,048 × 12,288 = 25 million numbers

• Used to predict next token, which is 12,288 numbers

• So, predict y from x with 25 million x variables and 12,288 y

variables (per observation)

MGMT 675 8

Summary of GPT-3

MGMT 675 9

GPT-3.5 Turbo Embeddings

• Can get vector embeddings of tokens from Chat GPT 3.5 Turbo by

API calls

• Vectors are 1,536 numbers long

• Excel file with vector embeddings of king, queen, woman, and man

from ChatGPT 3.5 Turbo

• Famous example: can add and subtract vectors and king + woman

− man ≈ queen

MGMT 675 10

https://mgmt675-2025/assets/embeddings.xlsx

Neural Networks (Prediction

Model)

History of Neural Networks

1943: McCulloch & Pitts propose a binary threshold model of

neurons.

1958: Perceptron introduced by Frank Rosenblatt

1986: Backpropagation popularized by Rumelhart, Hinton, &

Williams enables training of multilayer networks.

1990s: Recurrent Neural Networks (RNNs) and Convolutional

Neural Networks (CNNs) gain traction.

1997: Long Short-Term Memory (LSTM) addresses RNN

vanishing gradient issues (Hochreiter & Schmidhuber).

2012: AlexNet wins ImageNet, marking deep learning’s

breakthrough.

2017: Transformers introduced — Vaswani et al. publish

Attention Is All You Need, replacing recurrence with

self-attention.

2020s: Transformer variants dominate NLP and spread to vision

and multi-modal models. GPT = Generative Pre-trained

Transformer.MGMT 675 11

Multi-Layer Perceptrons

• A multi-layer perceptron (MLP) consists of “neurons” arranged in

layers.

• A neuron is a mathematical function. It takes inputs x1, . . . , xn,

calculates a function y = f (x1, . . . , xn) and passes y to the neurons

in the next level.

• Standard function (ReLU) for hidden layers is

y =

{
α+ β1x1 + · · ·+ βnxn if positive

0 otherwise

• First layer (input layer) = inputs (features).

• “Hidden layers” take inputs from previous layer and pass output to

next layer.

• Last layer (output layer) has one neuron for each output.

MGMT 675 12

Illustration

MGMT 675 13

Hidden Layer Computations

Inputs x1 = 2.0, x2 = −1.5

Neuron 1 α = 0.5, β1 = 1.2, β2 = −2.1

h1 = ReLU(0.5 + 1.2 · 2.0 + (−2.1) · (−1.5))

= ReLU(6.05) = 6.05

Neuron 2 α = −1.0, β1 = 0.5, β2 = 1.0

h2 = ReLU(−1.0 + 0.5 · 2.0 + 1.0 · (−1.5))

= ReLU(−1.5) = 0

Neuron 3 α = 0.3, β1 = −1.5, β2 = 0.7

h3 = ReLU(0.3 + (−1.5) · 2.0 + 0.7 · (−1.5))

= ReLU(−3.75) = 0

MGMT 675 14

Output Computation

α = −0.5, β1 = 1.0, β2 = −1.2, β3 = 0.8

ŷ = −0.5 + 1.0 · h1 + (−1.2) · h2 + 0.8 · h3
= −0.5 + 6.05 + 0 + 0 = 5.55

MGMT 675 15

Retrieval Augmented Generation

Why RAG?

• What happens when you upload a document to a chatbot and ask a

question about it?

• The text from the document is added to the question and the entire

thing is sent to an LLM. For long or many documents,

• Could be too long for the context window.

• Will be expensive.

• How to send only the most relevant parts of the document to the

LLM?

• Enter RAG

MGMT 675 16

Vector Stores and Similarity Search

• Before anyone asks any questions, create a vector store:

• Break entire/all documents into text chunks (think of paragraphs).

• Compute the vector embedding of each chunk (average of vectors of

tokens in chunk).

• Store the data: chunks and associated vectors.

• When someone asks a question, compute the vector embedding of

the question.

• Find the vectors in the vector store that are most similar to the

question’s vector.

• Send the associated chunks of text plus the question to the LLM.

MGMT 675 17

	API Calls
	Some Chatbots
	Language Models
	Neural Networks (Prediction Model)
	Retrieval Augmented Generation

